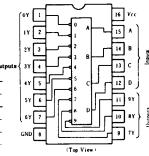

This monolithic decimal decoder consists of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by NAND gates. Full decoding of valid input logic ensures that all outputs remain off for all invalid input conditions.

■BLOCK DIAGRAM



INFUNCTION TABLE

	BCD Input				Decimal Output									
No.	D	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
1	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
2	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
3	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
4	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
5	L	Н	L	Н	Н	Н	Н	Н	Н	L	H	Н	Н	Н
6	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
7	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н
8	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
9	Н	L	L	Н	Н	Н	H	н	Н	Н	Н	Н	Н	L
	Н	L	Н	L	Н	Н	Н	Н	Н	Н	H	Н	Н	Н
INVALID	Н	L	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Н	Н	L	L	Н	Н	Н	н	Н	Н	Н	Н	Н	Н
	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Н	Н	Н	L	Н	Н	Н	Н	H	Н	Н	Н	Н	Н
	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

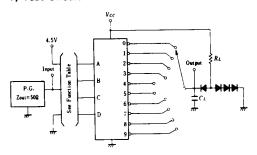
H; high level, L; low level

■PIN ARRANGEMENT

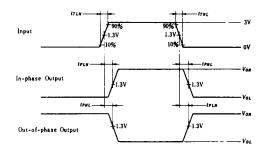
ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75^{\circ}C$)

Item	Symbol	Test Conditions	min	typ*	max	Unit	
	VIH			2.0		-	V
Input voltage	VIL			-	-	0.8	V
	Vон	$V_{CC} = 4.75 \text{ V}, V_{IH} = 2 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OH} = -400 \mu \text{A}$		2.7	-	-	V
Output voltage	Vol	$V_{CC} = 4.75 \text{ V}, V_{IH} = 2 \text{ V}, V_{IL} = 0.8 \text{ V}$	Io L = 8mA	-	_	0.5	v
			IoL = 4mA	-		0.4	
	Iтн	$V_{CC} = 5.25 \text{V}, V_I = 2.7 \text{V}$		-	-	20	μA
Input current	In	$V_{CC} = 5.25 \text{V}, V_I = 0.4 \text{V}$	-	_	-0.4	mA	
	Iı .	$V_{CC} = 5.25 \text{V}, V_I = 7 \text{V}$	_	-	0.1	mA	
Short-circuit output current Ios Vcc=5.25V				- 20		- 100	mA
Supply current	lcc**	$V_{CC} = 5.25V$	-	7	13	mA	
Input clamp voltage	Vik	$V_{CC} = 4.75 \text{V}, I_{IN} = -18 \text{mA}$		_	-	-1.5	V

^{*} VCC = 5V, Ta = 25°C

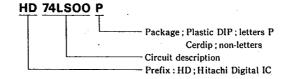

^{**} ICC is measured with all outputs open and all inputs grounded.

ESWITCHING CHARACTERISTICS ($V_{cc}=5V$, $T_a=25^{\circ}C$)

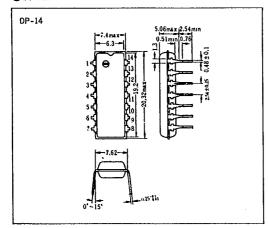

Item	·	Symbol	Test Conditions	min	typ	max	Unit
	2 Stage	tРLН	$C_L = 15 \mathrm{pF}, \ R_L = 2 \mathrm{k}\Omega$	_	15	25	ns
n e di di e	3 Stage			_	20	30	
Propagation delay time	2 Stage	tрнL		-	15	25	ns
	3 Stage			_	20	30	

TESTING METHOD

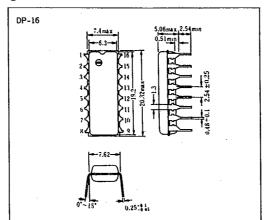
1) Test Circuit



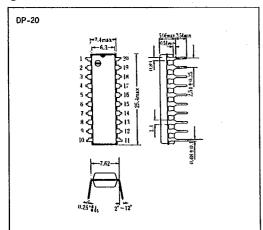
Waveform

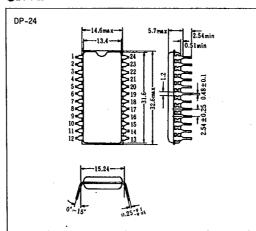

Input pulse: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, PRR = 1 MHz, duty cycle 50%.

Factory orders for circuits described in this databook should include a three-part type number as explained in the following example.

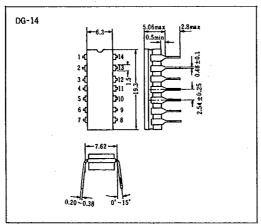


■Plastic DIP

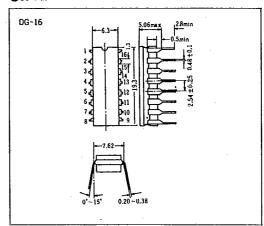

●14 Pin


●16 Pin

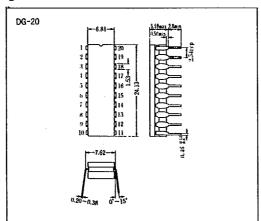
●20 Pin

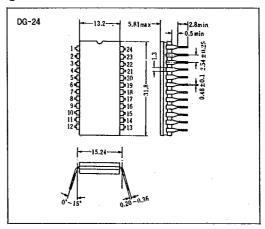


●24 Pin



■Cerdip


●14 Pin


●16 Pin

●20 Pin

●24 Pin

@HITACHI