August 1992 Revised April 2000

DM74LS174 • DM74LS175 Hex/Quad D-Type Flip-Flops with Clear

General Description

FAIRCHILD

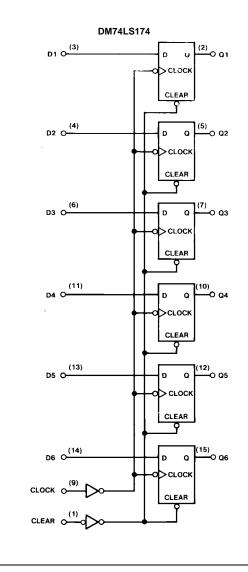
SEMICONDUCTOR

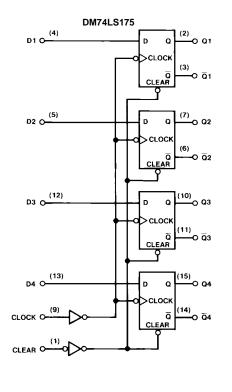
These positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the quad (175) versions feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requ

© 2000 Fairchild Semiconductor Corporation DS006404

Function Table


(Each Flip-Flop)


Γ	Inputs			Out	puts
	Clear	Clock	D	Q	Q†
	L	Х	Х	L	Н
	н	↑	н	н	L
	н	\uparrow	L	L	н
	н	L	Х	Q ₀	\overline{Q}_0

 $\label{eq:constraint} \begin{array}{l} H = HIGH \mbox{ Level (steady state)} \\ L = LOW \mbox{ Level (steady state)} \\ X = Don't \mbox{ Care} \\ \widehat{\uparrow} = \mbox{ Transition from LOW-to-HIGH level} \\ Q_0 = \mbox{ The level of } Q \mbox{ before the indicated steady-state input conditions were established.} \end{array}$

† = DM74LS175 only

Logic Diagrams

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to +150°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74LS174 • DM74LS175

DM74LS174 Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.75	5	5.25	V	
V _{IH}	HIGH Level Input Voltage		2			V	
V _{IL}	LOW Level Input Voltage				0.8	V	
I _{ОН}	HIGH Level Output Current				-0.4	mA	
I _{OL}	LOW Level Output Current				8	mA	
f _{CLK}	Clock Frequency (Note 2)		0		30	MHz	
f _{CLK}	Clock Frequency (Note 3)		0		25	MHz	
t _W	Pulse Width	Clock	20			nc	
	(Note 4)	Clear	20			ns	
t _{SU}	Data Setup Time (Note 4)		20			ns	
t _H	Data Hold Time (Note 4)		0			ns	
t _{REL}	Clear Release Time (Note 4)		25			ns	
T _A	Free Air Operating Temperature		0		70	°C	

Note 2: C_L = 15 pF, R_L = 2 k Ω , T_A = 25°C and V_{CC} = 5V.

Note 3: C_L = 50 pF, R_L = 2 k $\Omega,~T_A$ = 25°C and V_{CC} = 5V.

Note 4: T_A = 25°C and V_{CC} = 5V.

DM74LS174 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 5)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		2.7	3.4		v
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max			0.35	0.5	
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$			0.55	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$			0.25	0.4	ĺ
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_{I} = 2.7V$				20	μA
I _{IL}	LOW Level	V _{CC} = Max	Clock			-0.4	
	Input Current	$V_I = 0.4V$	Clear			-0.4	mA
			Data			-0.36	
los	Short Circuit Output Current	V _{CC} = Max (Note 6)		-20		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 7)			16	26	mA

Note 5: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

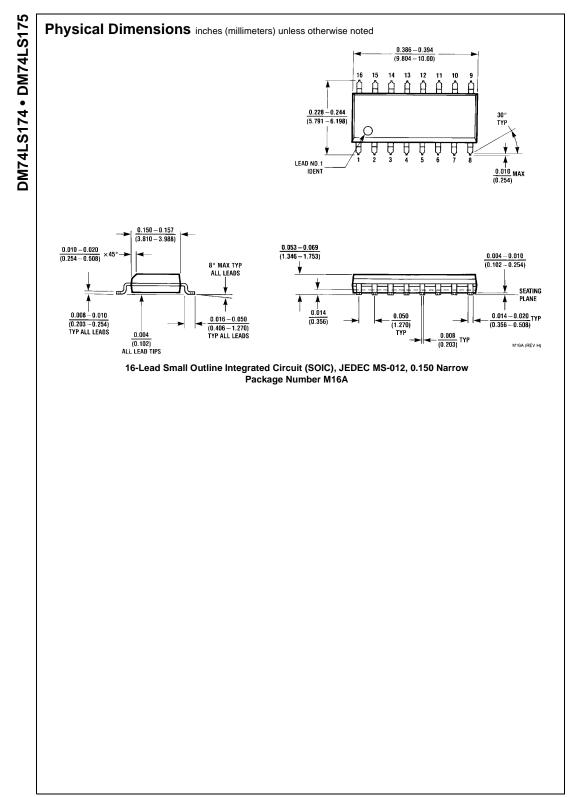
Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

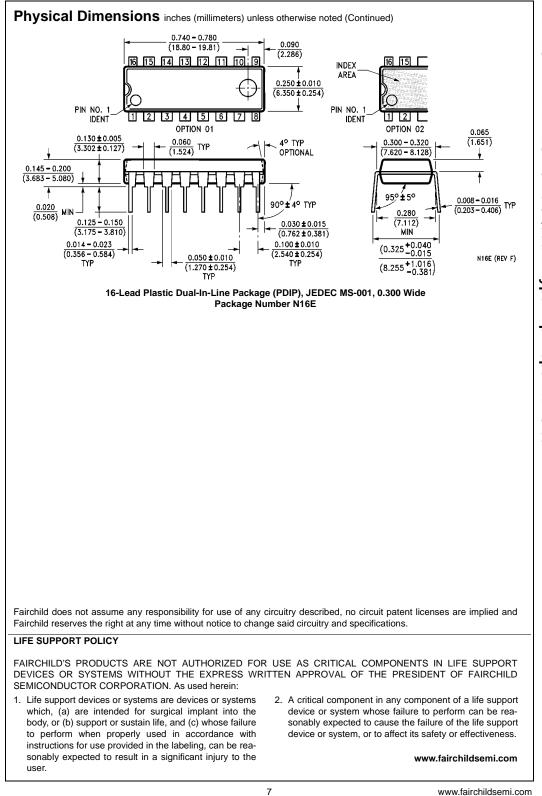
Note 7: With all outputs OPEN and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5V applied to the clock.

	V and $T_A = 25^{\circ}C$	From (Input)	$R_L = 2 k\Omega$				Γ
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	1
f _{MAX}	Maximum Clock Frequency		30		25		MHz
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Output		30		32	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Output		30		36	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Output		35		42	ns

DM74LS175 Recommended Operating Conditions

$$\label{eq:classical} \begin{split} & \text{Note 8: } C_L = 15 \text{ pF}, \text{ } R_L = 2 \text{ } k\Omega, \text{ } T_A = 25^\circ \text{C} \text{ } \text{ and } \text{ } V_{CC} = 5 \text{V}. \\ & \text{Note 9: } C_L = 50 \text{ } \text{pF}, \text{ } \text{ } R_L = 2 \text{ } k\Omega, \text{ } T_A = 25^\circ \text{C} \text{ } \text{ and } \text{ } V_{CC} = 5 \text{V}. \\ & \text{Note 10: } T_A = 25^\circ \text{C} \text{ } \text{ and } \text{ } V_{CC} = 5 \text{V}. \end{split}$$


DM74LS175 Electrical Characteristics


over recommended operating free air temperature range (unless otherwise noted)

Note 11: All typicals are at $V_{CC}=5V,\, T_A=25^\circ C.$

Note 12: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 13: With all outputs OPEN and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5V applied to the clock input.

